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D I G  ITAL ANALYS I S  OF RANDOM DATA RECORDS 
B Y  PIECEWISE ACCUMULATION OF TIME AVERAGES 

SUMMARY 

. A data reduction program for  the reduction and analysis of random 
processes  has been developed. The data &re digitized, and subsequent 
statis.tica1 analyses a r e  performed. The usual s torage limitations concerning 
long data records  are overcome by subdividing each record into truncated 
pieces and performing a s ta t is t ical  analysis of each piece. A s  each piece is 
analyzed, a recursive process  is utilized to  update average s ta t is t ical  
parameters  for  all subsequent pieces until a predetermined s ta t is t ical  
accuracy is realized o r  until a l l  data have been exhausted. 

The operator can exercise  various control parameters  and achieve 
desired statist ical  parameters ,  such a s  e r r o r  analyses , correlation 
coefficient, power spectra  density, t ransfer  function, phase relationships, 
and coherence function. Single o r  multiple functions may be processed. 

This program is coded in the compressed form of FORTRAN. 
allows the operator to  add and/or delete any specified portion of the existing 
program with a l t e r  cards .  

This 

INTRODUCTION 

An experimental investigation of many complex physical phenomena, 
including atmospheric motions , random vibrations , turbulence, acoustics , 
and combustion processes  requires  the use of s ta t is t ics  for  their  quantifica- 
tion. This,  in turn,  leads t o  a requirement for methods of statist ical  data 
reduction which are  accurate ,  convenient, and, if  possible, versati le.  With 
respect  to versati l i ty a digital computer program is particularly attractive 
because the modification of a reduction routine requi res  only the preparation of 
computer software as opposed to  the often lengthy r e sea rch  and development 
process  involved in the supply of analog equipment. 



I 

This  repor t  describes the development of a statistical data reduction 

No limitation 
routine in which digitization of analog data r eco rds  is undertaken, subsequent 
statistical calculation being performed on a digital computer. 
exists regarding the length of records  which may be  processed. Such 
limitations are normally set by s torage  limitations of the machine. However, 
as demonstrated herein, this  difficulty can be overcome by introducing the 
concept of "piecewise accumulated mean values. I '  

A second important peripheral advantage of this  concept is that it 
permits the statistical certainty of the result  t o  be checked as the  calculation 
proceeds. In fact, in the present program this check can be employed as  a 
program control feature. The calculation is allowed to  proceed only until a 
certain s ta t is t ical  certainty, specified by the user ,  is obtained. In this  way 
no computer time is employed other than that which is necessary  t o  reach  
the degree of statistical accuracy which the user feels to  be necessary for  
his particular application. The discussion of these e r r o r  estimates a l so  shows 
how the i r  variation as a function of record  processed may be used in the 
detection of nonstationary trends in the record .  Such t rends  are  a common 
feature of investigations of uncontrolled environments , such as the atmosphere, 
and hence the i r  reliable detection offers a valuable additional feature of the 
"piecewise" correlation approach. 

The estimation of the first and second derivatives of covariance 
functions is discussed. Not only are these parameters  frequently of value in 
the i r  own right, but as demonstrated here  they can be  employed to  interpolate 
the correlation function between measured lag points, thus providing an 
improved definition. 

The repor t  concludes with a description of t e s t s ,  performed utilizing 
a band-limited white noise test signal, which demonstrate the features of 
the program outlined in the earlier sections. 

ACCUMULATION OF PIECEWISE AVERAGES 

The s ta t is t ical  descriptions of random processes are normally 
required in t e r m s  of mean values, root mean square  values, correlation 
functions (and spec t ra )  , and probability s ta t is t ics .  
values a s  derived from a finite record of total length T may be written: 

The definition of these 

2 



mean values: 

x = -  x(t)  dt  , - 
T O  

root mean square  values : 

] Y 

T .=[ x ( t ) ' d t  
T O  

correlation functions : 

probability s ta t is t ics :  

The nth moment of the probability distribution is 

T 
xn = s xn(t)  dt . 
- 

T O  

We may generalize this problem, for convenience of the present discussion, 
by the schematic representation: 

where we refer to  the ( ) operations a s  a s ta t is t ic  and note that they 
normally involve some multiplicative operation a s  indicated by equations 
( 2 )  and ( 3 ) .  

The normal problem which a r i s e s  in programming our generalized 
equation (4) for  computer operation is that of providing sufficient storage 
locations for  the basic data x(t)  o r  y ( t )  if the integration period T is 
to  be of sufficient length t o  yield a statistically significant resul t .  For 
example, in  terms of the test cases  discussed at the end of th i s  report ,  a 
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total  record of 30-sec duration has been processed with an analog-to-digital 
conversion r a t e  of 20 000 sample pairs  p e r  second. Thus,  1 .2  x IO6 storage 
locations would have been needed for  s torage of data alone, irrespective of 
the requirements for  the executive portion of the program. 

To avoid such a problem we subdivide the total record into m equal 
pieces each of length T and introduce data f rom each piece into the machine 
separately (Fig. I ) .  The piecewise average of a statist ic is then calculated 
by integrating initially over each one of these pieces. This leads to  the 

definition of a piecewise or  sample mean, which for  the i piecg is th 

t = i A T  - 
I \ -  - f I \ A t  . I 

p-- -- PIECE LENGTH = AT 

x x x x o  0 0 x x x  x 

* x x x 0 0 0 x x x x 
C C '  

Figure 1. Subdivided records .  

The desired average over the ent i re  record is subsequently obtained by 
averaging the resul t  obtained from all pieces. This  leads t o  the definition 
of an accumulative mean, 

Expanding the s m m a t i o n  we find that 

4 



AT iA,T m A T  
--- - J ( ) d t +  . . .  - ( ) d t +  . . .  

AT (i- i )AT AT (m-1)AT O m   AT^ 

- -  - I T ( ) d t  . 
T O  

The accumulative mean is thus identified with the time integral over the entire 
record as long as the integrand, ( ),, may be derived directly from the signals 
actually recorded. In the succeeding section we discuss  the problem of e r r o r s  
which arise when this is not the case.  
approach has appreciably reduced the data storage requirements , equation (6)  
would sti l l  indicate the necessity of storing the m sample o r  piecewise means. 
This,  a lso,  can be avoided by the use of the following recursion formula. 
Suppose we obtained an accumulative mean over the first m pieced and have 
ju s t  processed a new piece ( m  + 1). 
new one, 

However, although this method of 

The mean over all pieces including the 

- m+i 
( ) m + i >  = - m + i  
- 

i=i 

can then be found by updating the information of the previous m pieces by 
including the mean ( ) of the new piece. Substitution of equation ( 6 )  into 
equation (8 )  leads to  the recursion formula: 

Therefore,  the need to  s to re  the m individual piecewise averages i s  
eliminated. Only the accumulative mean of all  pieces processed to  date is 
required and can be updated each t ime a new piecewise mean i s  obtained. This  
effectively reduces all limitations on the length of record which can be 
processed. 

5 
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A second advantage is that the la tes t  es t imate  of the mean accumulated 
to  date is always available for  output and inspection. This  facility has proved 
extremely valuable in a number of diagnostic applications. 

Subdivision Error 

A s  pointed out, the procedure leading to  the recursion formula in 
equation (9)  yields a resul t  identical with the t ime averaged mean only if the 
multiplicative process  used in forming the s ta t is t ic  involves only the actually 
recorded o r  digitized data values. A pr ime example, in point, where this is 
not the case  a r i s e s  in the measurement of the covariance of two signals 
having nonzero mean values. 
given by 

The time-averaged value of the covariance is 

- - - - I 
C (T=O) = - f [x( t )  -xm]  [ y ( t )  - y m ]  dt 

T O  
T 

- -  l L  - -  
- x ( t )  y ( t )  dt - x y - -  

m m  T O  

The piecewise est imate  of this covariance is based, however, on the con- 
tributions from single pieces, which consider only the mean value of that 
piece. 

th The contribution to  the covariance of the i piece is therefore 

Applying the summation equation ( 6 )  t o  these contributions, we find that the 
accumulative covariance is :, 

6 



mAT i=i ( i - i )AT 

i AT 

(i-1)AT 

- 
-- yi 

AT 
x ( t )  dt 

The first and third t e r m s  in the [ ] of equation (13) cancel, and the 
accumulative covariance becomes 

This accumulative covariance thus differs f rom the t ime average, equation 
(11) , by the subdivision e r r o r  S ( m ;  T = O )  where 

m 

i=l 

i - -  - -  
S(m;-r=O)= C ( T = O )  - C (T=O) = - x Y +-  C XiYi 3 m m m  m T 

which can be rewrit ten in the form,  

The value of this e r r o r  in two limiting cases  is quickly established. First, 
in the l imit  m = i  (AT-T) the e r r o r  is zero by definition. In the opposing 
l imit  m-03 we see that in practice this would mean that each piece con- 
tained only one data sample;  thus, for  each piece, 

x(t)  =x. and y ( t )  = y  
1 i 

. 
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Thus, re fer r ing  t o  equation (12)  we see that each C. ( T = O )  will be iden- 

t ically equal t o  zero.  Thus, a s  m-m, 
1 

F o r  intermediate piece lengths O<AT < T an  idea of the significance 
of the subdivision e r r o r  can be gained by consideration of a simple analog. 
Suppose the values of (Z. -Y  ) and (yi - ym) , respectively, were plotted 

as a function of i o r  its equivalent t ime through the record .  Two "signals" 
would result subject t o  the condition that their  minimum time period must be 
comparable to the piece length. Furthermore,  equation (15) suggests that 
the subdivision e r r o r  is determined by the covariance of our  two artif icial  
signals.  Thus we reach the conclusion that a finite piece length acts  like a 
high-pass filter which cuts off the energy contained in frequencies whose 
period i s  comparable to  o r  greater than the piece length. 

- - - 
i m  

Tes t s  described in a later section of this report  confirm this 
hypothesis. It is shown that the indicated energy of the signal does begin t o  
decrease once the piece length becomes comparable to  the period of energy 
containing frequencies. However, the fi l tering action is very  weak, being 
comparable to  that of a high-pass filter having a cutoff frequency f given by 

C 

I f = -  
c AT 

and a "rolloff '  rate of only 2 to  3 dB per  octave. 

It is appropriate t o  conclude this  section by pointing out that sub- 
division e r r o r  is not a basic feature of piecewise operation p e r  se. It a r i s e s  
only because of the particular method adopted he re  in which the piecewise 
mean values Z. and 7 are employed in the covariance est imates ,  equation 

( 1 2 ) .  We have already noted that no subdivision e r r o r  results as long a s  the 
actually recorded o r  digitized values are used in unmodified form through the 
accumulative procedures.  Thus, re fe r r ing  to  equation (11) we see that the 
first term of the root mean square of this expression could be accumulated 
without e r r o r  and the product X j7 subtracted at the end of the calculation 

when the necessary information was available. However, in the present 
program we believed that the filtering action of finite piece lengths did offer a 

1 i 

m m  
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feature of potential value for  the elimination of slow drif ts  o r  trends when 
such events were present and undesirable. T o  eliminate subdivision e r r o r  it 
is only necessary t o  choose piece lengths comparable to the period of the 
minimum frequencies of interest .  
this is seldom the consideration which controls minimum allowable piece 
length, particularly where cross-correlation analysis is required.  However, 
a general  awareness of this  feature is important. 

Furthermore,  experience has shown that 

ENVIRONMENTAL AND STATISTICAL VARIATION OF 
P IECEW I SE AVERAGES 

A s  mentioned in the introduction to this report ,  piecewise accumulation 
of mean values offers the opportunity t o  estimate the statist ical  reliability of 
a result  a s  the calculation proceeds. In fact, in the existing program this 
parameter  i s  used in formulating a decision a s  to  whether another piece of 
data should be admitted. This section of the report  outlines this approach, 
and tes t  cases  which appear to  justify i ts  u se  a r e  presented in the section, 
Demonstration of the Piecewise Method. 

The value of any piec'ewise average ( ) will depend both on its i 
position in the complete record and on the piece length AT. 
of piecewise values may be caused either by a change of the environment 
( i. e .  , a nonstationarity) o r  by a lack of integration t ime.  In any finite 
integration period a cer ta in  amount of statist ical  variation i s  t o  be expected 
since only a finite number of random occurrences can take place, and these 
wi l l  not a l l  cancel precisely.  

These variations 

Unfortunately, environmental and statist ical  e r r o r s  occur 
simultaneously and a r e  difficult to  separate .  
achieved in theory by regarding the actual conducted experiment a s  one sample 
of a population of imaginary experiments which a r e  all recorded for identical 
time-independent boundary conditions. Assume that j = I, 2 , 3 ,  . . . N 
realizations of the same  environment have been observed. Statistical averages 
may then be established by averaging over the different realizations instead 
of over t ime. This ensemble average wi l l  be denoted by E [  ( ) ]  and termed 

the expected value: 

Separation may, however, be 

N 

9 
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t h  
Let x (J )  (t) and y ( j )  ( t)  denote two signal records  f rom the j 
realization. 

th  
The contribution to  the correlation obtained from this j piece of 

length AT is 

tl + AT 

while the ensemble average is obtained by summing over a l l  N available 
realizations : 

N 

i=i 

i 
= -  C R i  E ( R J  N 

Each sample mean R 
i 

because of statist ical  o r  other variations. A measure of the magnitude of 
these variations of sample means i s  provided by the mean square e r r o r  o r  
variance: 

will differ from the ensemble average, E(Ri)  , 

The practical implications of the central  limit theorem now imply that 
variations of the piecewise t ime averages relative to  their  population mean 
should be normally distributed, regardless  of the physical process generating 
the t ime history record.  One estimate of this population mean is provided by 
the ensemble average,  E ( Ri) N. 

mean will deviate f rom the ensemble average by m o r e  than a prescribed 
amount is given by the student "t" distribution. We may thus calculate a 
cer ta in  confidence limit for the variation of the sample means around the 
ensemble average. This limit will not be exceeded by a fraction, p, of a l l  
realizations. The normalized value of the confidence level, t is called the 

Further ,  the probability that any sample 

P'  

i o  

I 



confidence factor and is expressed in the inequality 

I R ~  - E ( R . ) I  st ( N )  (VAR 1/2  . (19)  
1 P 

The confidence factors  for  the normal  distribution are listed in Table I. 

TABLE I. PERCENTILE FACTORS AND CONFIDENCE INTERVAIS FOR 
STATIONARY RECORDS 

Student's t Distribution 

m 

2 
3 
4 
5 
6 
7 

8 
9 

10 
12 
14  
16 

1 8  
20 
25 
30 
6 1  

m-00 

90 

3.08 
I. 89 
I. 6 4  
I. 53 
I. 45 
I. 44 

1.42 
I. 40 
I. 38 
1 .35  
I. 34 
I. 33 

I. 33 
I. 32 
I. 32 
I. 31 
I. 30 
I. 28 

0 .707 
0.578 
0.500 
0.447 
0.408 
0.378 

0.353 
0.333 
0.317 
0.288 
0.267 
0.250 

0.236 
0.222 
0.200 
0.183 
0.128 
I/= 

2 
'0.50 

- 

2.71 
4 .61  
6.25 
7.78 
9.24 

10.6 

12.0 
13 .4  
14.7 
17.3 
19.8 
22.3 

24. 8 
27.2 
33.2 
39 .1  
74.4 

m 

X2-Distribution 
2 
xo. 10 

~ 

0.0158 
0.211 
0.584 
1.06 
I. 61 
2.20 

2.83 
3.49 
4.17 
5.58 
7 .  04 
8.55 

1 0 . 1  
11.7 
15.7 
19. 8 
46.5 

m 

' 0 .  90 lm 

0.823 
0.716 
0.625 
0.558 
0.507 
0.465 

0.433 
0.407 
0.383 
0.347 
0.318 
0.295 

0.277 
0.261 
0.230 
0.028 
0.142 
l/G 

'0. 

0.063 
0.153 
0.191 
0.206 
0.211 
0.212 

0.210 
0.208 
0.204 
0.201 
0.190 
0.183 

0.179 
0.174 
0.160 
0.150 
0.112 
1 / 6  

Equation (18) does give a n  est imate  for  the variations of the individual 
realizations, and the associated confidence intervals could be calculated if 
(Var  Ri) were known accurately.  However, we have calculated (Var  R ) 

f rom a finite number of realizations,  N, of the experi.ment. Hence, in  
i N  
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another series of N realizations a different value of this variance might be 
obtained. An accurate  description of the s ta t is t ical  variations should there-  
fore  include not only the variations between individual realizations within a 
single group but a lso variations between different groups of realizations. 

Let Var E. denote the population variance which is calculated by 
1 

taking the ari thmetic mean of a l l  samples of ( V a r  R ) 

variance fo r  a l l  groups. The relative variation between the variance estimate 
f rom a single group and the average over a l l  groups can then be expressed by 
the new variable: 

i .  e. , the mean 
i N’ 

The probability distribution of this variable is given by another universal 
distribution function, the x2 distribution. Knowing this distribution, one 

( N )  , which will be exceeded by the x2 can calculate a lower l imit ,  

samples of a l l  but 10 percent of the admitted groups. One can also calculate 
an upper limit x2 (N) , which will  exceed 90 percent of all x2 samples. 

Both l imits together then give a confidence interval for the statist ical  
variation of variance estimates between different groups of realizations. The 
80-percent confidence interval would be 

xo. 10 

0. 90 

The confidence factors 

N( Var Ri) - 
Var R. 2 ____ 

1 (N) xo. 10 

and x 2  a r e  xo. 90 0.10 

(21) 

also listed in Table I. For 

N 2 30 they may be calculated from the confidence factors ,  Z of the 

normal distribution [I] : 
P Y  

= 1.28, and Z = l/l. 28 = 0.78. zo; 90 0.10 In particular,  

1 2  



In summary,  we find that a single group of N realizations can provide 
the following est imates  : 

2 .  The sample variance,  (Var  Ri) N, for  the required s ta t is t ical  

variation of sample means relative t o  the ensemble average from equation 
(18 ) .  

3 .  The confidence interval for  the statist ical  variations of the sample 
variance relative t o  the population variance of many such sample groups. 

A l l  these est imates  are based on universal distribution functions 
which are independent of the particular physical process from which the 
recorded t ime history is obtained. 

The preceding study of statist ical  variations between piecewise means 
requires  many samples  which have been acquired by repeating the same  
experiment many t imes  under the s a m e  environmental conditions. Such 
control of the environment is not always possible during space flight o r  in 
meteorological experiments.  

The alternative is then to  assume that the environmental boundary 
conditions are sufficiently time invariant during one experiment s o  that 
individual pieces of a long record represent  statistically independent real iza-  
tions of these invariant boundary conditions. 
of length T is subdivided into i = 1 , 2 , 3 ,  . . . . . , m pieces of length 

T AT = - , m 
Each of these piecewise estimates is then treated as if it came from a new 
realization. This  means that the sumination over realizations is replaced by 
an accumulation of pieces. The est imate  of the ensemble average for  any 
statist ic ( ) becomes 

i 

F o r  this purpose a long record 

a s  discussed in the section, Accumulation of Piecewise Averages. 

13 



Similarly,  the sample variance becomes 

m 

i=l 
. m-I 

The following conditions [ 2 ]  must be met to  justify this  replacement 
of realizations with pieces : 

I. The t ime history of the s ta t is t ic  If( ) I '  is a self-stationary 
process.  

2. The autocovariance function of this  t ime history meets  certain 
integrability conditions. 

3.  The individual piece lengths, AT, exceed the time-lag range 
within which the autocovariance is significant. 

Experimental data usually can be arranged t o  meet  the preceding 
conditions 2 and 3.  However, condition I requires  that the environmental 
variations be negligible during the ent i re  processed record .  Such t ime 
histories are re fer red  t o  a s  stationary.  F o r  such stationary t ime series all 
remaining variations are statist ical .  
averages and the s ta t is t ical  variations between sets of pieces should all 
follow the universal probability distributions just  discussed. The  Iffit" of 
these distributions may thus be used a s  a cr i ter ion for  stationarity.  One such 
cr i ter ion is developed in the remainder  of this section. 

Thus variations between piecewise 

Consider the confidence interval for  the statistical variations of the 
2 -  sample variance A ( ) of a piecewise average. This is obtained by 

combining equations (21 )  and (24) and yields 
m 

14 



2 (m)  xo. 90 

5 Var ( ) 2 
2 (m) xo. i o  

m m 
However, the two factors  7 and 7 both asymptotically approach 

unity [equation (22 ) ] .  Thus in  this limit the inequality of equation (25) 
approaches a n  equality yielding the population variance.  
accessible statistical e r r o r  of piecewise mean values will therefore approach 
a finite constant value if the environment is stationary.  

xo. 90 xo. i o  

The experimentally 

The statist ical  e r r o r  of a piece depends on piece length, and thus its 
value is ra ther  a rb i t ra ry .  One would expect it to  decrease with increasing 
piece length s ince more  statist ical  variations a r e  included. Thus it would 
be a minimum if the piece spanned the ent i re  available record.  
this case no est imate  of a variance could be made s ince this requires  severa l  
measurements.  If the process  is stationary,  the piecewise est imates  are 
normally distributed and statist ically independent , and the variance of the 
accumulative average f rom m pieces will be i / m  t imes  that of the 
individual pieces.  

IIowever, in 

Thus we obtain the desired expression for  variance of the accumulated 
means : 

Replacing the var iances  with the experimentally accessible approximations 
contained in equation (24)  , we obtain 

Note that this is just  the quantity required since it represents  an  estimate of 
the variance of a number of identical experiments,  of which the one actually 
conducted is one member .  That is, we have obtained the probable deviation 
of the mean actually obtained from a mean obtained from an  ensemble of such 
experiments.  

15 



Substituting m = T/AT we find the well-known resu l t  that the probable 
e r r o r  of an accumulative mean should decrease  with the inverse square  root 
of the integration time o r  record  length, i. e. , 

The fu l l  practical  significance of the e r r o r  analysis of this  section can now be 
explained by comparing the situation developed here  with that existing where 
a pure t ime integration has been undertaken. In  the latter case the rat io  of 
the probable e r r o r  of the mean value to  the mean value is commonly expressed 
as 

AC i - =  
Y m C 

where B is the bandwidth of the data to  be processed. However, this 
bandwidth is not known a pr ior i ,  and at best some  estimate based on a past 
experience or  pure guess must be inserted in deciding on an integration t ime. 
A t  the end of this  integration t ime,  no method is available to  ascertain 
whether the expected confidence level was reached, whereas any nonstationary 
t rends  in the data will have been observed in the integration process.  

By contrast, using a piecewise method the uncertainty of the result  
obtained af te r  processing any number of pieces can be determined by using 
equation (27)  , combined, if necessary,  with confidence factors just dis-  
cussed. Once the desired confidence interval is reached, the calculation can 
be terminated. No a rb i t r a ry  decisions are required.  

- 
Finally, using equation (28 )  we see that A (-) should decrease as m 

the reciprocal square  root of integration t ime o r  number of (equal length) 
pieces processed to  date. 

- - 
Of course,  a prec ise  straight-line relationship between A ( ) and - m - 

i/d BT is not t o  be expected since the values of A I) a r e  subject t o  

some uncertainty. However, the shape of the best straight-line f i t  can be 

16 
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employed t o  obtain a n  est imate  of the equivalent bandwidth B. 
bandwidth can be used t o  calculate confidence levels for  the relative 
accumulative e r r o r .  

Finally, this  

Rearranging the two inequalities of equation (25) and using equations 
(25)  and (28)  , we find the limits of uncertainty of the accumulative e r r o r  
specified by 

- - 

Thus these limits can be marked around the best straight-line f i t  of the 
- 

A ( ) m  vs  l/m graph. If the majority of values a r e  found contained with- 

in the intervals s o  specified, stationarity of the data record has been 
demonstrated. 
outside these l imits  indicate that a nonstationarity has occurred. Further-  
more,  the integration t ime for which such deviations occur indicates the 
onset of the nonstationarity and can be used t o  optimize an available record .  

On the other hand, significant and consistent t rends of values 

A direct  calculation of the  accumulative statist ical  e r r o r  for  the 
autocorrelation function of a band-limited white noise test signal is discussed 
in the section, Demonstration of the Piecewise Method. It can be seen  that 
the predicted straight-line relationship i s  obeyed while the slope of the line, 
700 Hz, equals the bandwidth of the fi l ter  used. 

Also ,  the 90-percent confidence intervals calculated from consideration 
of the x 2  distribution are demonstrated. The fact that all accumulative e r r o r s  
fall within the interval indicates the stationarity of the test signal. 

In summary,  the purpose of this  section has been to  demonstrate the 
way in which piecewise accumulation of statist ical  values can be employed to 
permit direct  calculation of the probable e r r o r  of the final resul t .  
a rb i t ra ry  decisions with regard to  integration t ime are required.  
is allowed to proceed only until the required confidence interval is obtained. 
Furthermore , consideration of the behavior of these confidence intervals as 
a function of the length of processed record may be used t o  detect any 
nonstationary t rends  contained within that record.  

No 
Calculation 
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COVARIANCE FUNCTIONS AND NOISE 

The covariance function for  two time history records ,  x(t) and 
y(  t) , respectively, is defined. 

Two problems arise in the programming of this algorithm for  piecewise 
operation. First, a s  in the case of the ze ro  t ime delay covariance C ( T = O )  

calculation discussed in the section, Accumulation of Piecewise Averages, 

the mean values of the signals 2 and m m 
accumulation procedure - only at its termination. As in the previous case 
they a r e  replaced by the more  accessible piecewise mean values ?r. and 7. 
respectively. As was the case  in the section just mentioned, this again leads ' 
t o  a subdivision e r r o r .  Arguments s imi l a r  t o  those previously used show 
that this  e r r o r  is eliminated a s  long a s  the piece length is comparable t o  o r  
longer than the period of the minimum frequency of interest .  

T 

are not available during the 

1 1' 

The second problem arises for  the finite t ime delay values. In 
moving along the samples  representing x( t) , 
situation where the required y ( t  + T )  
piece currently in the machine. The method used to  co r rec t  this  and 
maintain the same number of samples for  each time delay is t o  read in an 
additional maximum time delay ( T ) data sample.  A s  the t ime delay ( T )  

shifts, T additional samples are added t o  the delayed channel, maintaining 
the piece length. By this  method the s a m e  s ta t is t ical  accuracy of the 
correlation is maintained for  each t ime delay. 

one eventually a r r ives  at the 
sample is not contained within the 

M 

The situation is shown schematically in Figure I.  F o r  the case  
illustrated in that figure the piece length is five times T Parallelogram 

ABCD shows the sample products for  T and parallelogram ABC'D' for  T I .  

M' 
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I 

th  
The piecewise covariance for  t ime delay T obtained from the i 

piece therefore is evaluated by the following algorithm: 

iAT 

Covariance functions a r e  frequently used to  determine which 
components of the signals contained in t ime records x( t) and y ( t )  a r e  
common to  both’. This concept of common signal is based on the t ime history 
of the instantaneous product, x ( t )  y ( t  + 7). The mean value of such a 
product is called the correlation function. 

In accordance with our previous discussion, its piecewise average 
would be 

It differs from the piecewise estimated covariance by the product of the 
piecewise mean values. Comparing equations (32)  and ( 3 3 )  we find that 

The instantaneous product, x ( t )  y ( t  + T )  , wil l  oscillate around its mean value , 
R i ( 7 ) ,  

partially, when the product is averaged by integrating over t ime.  

and these oscillations wil l  tend to  cancel one another, a t  least  

Two signals a r e  said to  have no common modulations if  their  
covariance vanishes. This complete cancellation wil l  occur i f ,  for example, 
an increase in one signal is accompanied by ei ther  an  increase o r  decrease of 
the other,  the two being equally probable. A typical example of two such 
signals is represented by shot noise emission from two photodetectors. 

The partial  cancellation of the oscillations of an instantaneous product 
provides a possible definition for  noise components of a signal. 
component, x (t) , of the total signal, x ( t )  , may be defined with respect  to  the 

The noise 

. N  
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second signal y ( t )  . It is that component of x ( t )  which does not contribute 
t o  the covariance of x(t) and y ( t )  , i. e. , 

Conversely, the common component 

N x = x - x  
C 

is that component of signal x(t)  which is responsible for the finite value of 
the product mean value. 

The second signal y ( t )  
component by now taking x( t) as the reference signal, i .  e. , 

can be s imi la r ly  divided into its common and noise 

Combining equatiobs (35) and ( 36) we find that 

The integration of the instantaneous product has thus eliminated the 

We should note here,  
noise components, and the resultant product mean value depends only on the 
signal variations which are common to  both signals. 
however, that the word "commonf' does not imply that x and y are 

identical, merely that they have a fixed time invariant phase relationship. 
Fur thermore  , this  phase relationship and the i r  frequency content will determine 
the value of T for  which equation (37) obtains a maximum value. 

C C 

F o r  any finite piece length the noise components will not cancel 
precisely and will therefore produce s ta t is t ical  variations of the product 
mean values. One expects, therefore,  that a relationship exists between the 

20 



statistical variations of the piecewise means and the spec t ra l  distribution of 
both the common signal and noise signal power. 

Jayroe and Su [ 31 have derived this  relation analytically on terms of 
the cross-power spec t ra l  density, 
power spec t ra l  densities, S ( f )  , of the noise components. Thei r  resu l t  may 

be stated as: 

G(f)  , of the common signals and the 

N 

- - -  2 
m 

i=i 

i - 

A2 Em(-r,T) = m( m-i) 

) df . (38) 
i +f2 - 4 n i f ~  

= - T s [ G 2 ( f )  + S h x ( f )  + S h y ( f ) ]  ( i + e  
4 2  

The power spec t ra l  densities a r e  directly related to  the mean square  
amplitudes of the associated signal components by: 

and 

Assuming that the noise components have a flat spectrum, 

I 

I 

I 0 elsewhere , 
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and 

I 
(42. i) 

I 0 elsewhere , 
the above relation may be rewrit ten as 

(42. 2) 

This relation indicates that the statist ical  e r r o r  accounts for  the fluctuations 
of both the common signals and the noise components. Both contributions 
vanish with the inverse square root of the integration t ime, and both depend 
on the t ime lag in  a known fashion. The time-lag dependence may thus be 
removed by integration. Integrating the time-lag-dependent factor in the 
integrand leads t o  an  approximation of the Dirac function 6 ( f )  . The integral 
of the time-lag-dependent factor of the noise term vanishes in good approxima- 
tion, since the factor oscillates between positive and negative values. The 
correlation of the time-lag dependence by integration thus gives the 
approximation 

+f2 G2(  f =0) - -  - I s G2(f )  df + 
T 

-f2 
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The second term character izes  the power at two frequencies and thus accounts 
for  near-zero frequency components. 

For autocorrelations ( y=x) the noise terms vanish by definition. 
For our test case of band-limited white noise, the cross-power spectrum 
becomes the power spectrum. 

- - 
Cm( 0) / (f, - f,) f, 2 f 5 f, 

G ( f )  = 

0 elsewhere , 

and the relations between s ta t is t ical  e r r o r s  and the amplitudes of the common 
noise signal may be stated as: 

- - 
C A m  i - - 7 6 R =  - Y 

em( 0) 4 ( f 2 - V  T 

The f i r s t  relation explains why the noise bandwidth By which is obtained 
from the slope of the e r r o r  curve,  makes the filter bandwidth (f2-fl) . The 
second relation has been used t o  check the variation of s ta t is t ical  e r r o r  a s  a 
function of t ime lag. This comparison is discussed in detail in the section, 
Demonstration of the Piecewise Method. 

DERIVATIVES OF THE COVARIANCE FUNCTION 

The piecewise program a lso  includes an  option for  the calculation of 
the first’and second derivatives of the covariance function. In some situations 
these derivatives may be the physical quantity of interest  i n  the i r  own right.  
We shal l  a l so  demonstrate here  that they are related t o  the covariance of the 
time derivatives of the signals.  Thus statistics based on the signal time 

23 



derivatives ra ther  than on the signals themselves are automatically included 
within this  option. Finally, as we shal l  discuss  in  the next section, a 
knowledge of these derivatives may be employed to  interpolate the covariance 
curves between measured lag points. 

Let us consider the covariance between the delayed signal y ( t  +T) 
and the time derivative of the x(t)  signal. The  estimate of this covariance 

fo r  the i piece is, from our previous discussion, t h  

iAT 
ax(t) [ y ( t +  T) - yil dt . ( 45) 

i 
a t  (7) = - J ( i )  

AT ( i - i ) 4 T  i 

The 
is a 

superscr ipt  i indicates that one factor in the instantaneous product 
t ime derivative. If both factors  are t ime derivatives we obtain 

1 r  axt t 

Direct  calculation of 

instantaneous digital samples of the signals,  not the i r  time derivatives,  a r e  
stored in the computer. We approximate the required t ime derivatives with 
a finite difference quotient between two digital samples  which are separated 
by the sampling interval ( E) of the analog-to-digital converter.  

( i, ( T )  and e ( 2, ( T )  is not possible since 
i i 

Substituting these estimates into equation (45) and using the normal 
accumulative procedures over m pieces,  we obtain the quantity 

iAT i m 

i= i 

= .  ( i )  1 
m E [ X ( t  + E) Y(t 7) - X(t) Y(t + T)] dt . ( 7 )  = - C 

( 48) ( i - i )AT 

If now it is assumed that the data are stationary over the sampling period 
E,  then 
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1 x( t  + E )  y ( t  + T ) d t  = 1 x ( t )  y ( t  + T - E )  dt . 
Substituting this identity into equation (48) we find that 

- 
A s imi la r  derivation yields the resul t  for c ( 2 )  ( 7 )  , namely, m 

We see, therefore,  that the approximation of signal t ime derivatives 
by sample difference quotients equations (46)  o r  (47) can be employed to  
yield: 

1. The covariance between one signal and the t ime derivative of a 
second signal. This  quantity is a l so  the first derivative of the covariance 
function of the signals themselves.  

2. The covariance between t ime derivatives of two signals.  This  
quantity is identical to  the second t ime derivative of the signal covariance 
function. 

Finally, it should be mentioned that accumulative e r r o r  analyses for  

(') ( 7 )  and cln ( 2 )  ( 7 )  a r e  also included. They follow m 

- - 
the quantities 

precisely the methods used for  the covariance functions as discussed 
previously. 

Results obtained for the first and second derivatives of the covariance 
function of a band-limited white noise signal together with the associated 
e r r o r  es t imates  are presented in the Conclusions section. 
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INTERPOLATION BEYWEEM LAG POINTS 
- 

Although the covariances of time derivatives ("(7) and m - - 
( 2 )  ( T )  were introduced principally for  reasons of physical interpretation, C 

the i r  identity with the time-lag derivatives, equations (49)  and (50) ,  permits 

the detail of the covariance curves, (7) , to  be improved between actually m 
calculated lag points. 

m 

Such improvement of detail is important since i t  can: 

I .  Separate the requirements for  lag points and integration points 
Points for  the which a r e  required for  calculation of Four ie r  t ransforms.  

Four ie r  integral can be provided by interpolation instead of direct  calculation 
of lagged product mean values. 

2 .  
distributions of interpolated values t o  the type of detail required of the 
covariance curve. Any special  distribution of interpolated values such a s  
inverse ( I /T )  spacing of logarithmic spacing could be prescribed. 

Minimize the number of calculated t ime lags by matching 

3 .  Save computer t ime by stopping calculation as soon a s  s ta t is t ical  
e r r o r s  are reduced below the level of fixed numerical e r r o r s .  This  is 
discussed a t  the end of this section. 

The above advantages may be realized by any interpolation routine which 
uses time-lag derivatives. We have chosen a polynomial interpolation of 
fifth order  around the center point T L + 1/2 * 

This interpolation is valid inside an  interval, 
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which is terminated by two lag points for  which the covariance function - - - - 
(7) and its f i r s t  and second derivative, C ("(7) and Em ( 2 ) ( T ) ,  a r e  m m 

accessible from lagged product calculations. The center  of this interval is 

i - _ -  
5 + 1 / 2  2 '7a+1+'a) * 

( 52) 

The coefficients a of the polynomial approximation are found by comparing 

the d e r i v a t i d s  which the above interpolation would give at  the end points 
T and T with the derivatives that have actually been calculated at these 

points. This comparison leads to  a sys tem of six linear algebl.aic equations 
which have been grouped into two blocks of th ree  equations. The f i r s t  group 
of equations is 

n 

L Q + i  

( n - j ) !  n! [ ( 1 / 2 ) n +  (-1/2)n] = a j , 
5 

n=O 
( 53) 

where j = 0, I, 2. Here a .  describes the sum of the normalized derivatives 

that a r e  given for  the end points, 
1 

where j = 0, 1, 2. The normalized derivatives in a. and cxz follow directly 
from the finite difference approximations given in equations (46)  and (47)  . 
In the case  of a l ,  one must  co r rec t  for  the dislocation of the estimated 

( value. m R 

The second group of equations is 
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n! 
[(1/2)n - (-1/2,"] = p j  . 

5 

n=O ( n - j ) !  

Here  p 
given at the end points. 

descr ibes  the difference of the normalized derivatives which are 
j 

The normalized derivatives in  P o  and p .  follow directly f rom the finite 
J 

difference approximations given in equations ( 46) and (47) . In using finite 
differences for  the approximation of a I y  
the dislocation of the finite difference. 

one must  cor rec t  once again for  

The six values of a 

approximation of the time derivatives. The two sets of equations therefore 
represent  two sys tems of th ree  l inear algebraic equations for  the odd and 
even polynomial coefficients respectively. Solving these equations for the 
desired polynomial coefficients gives the result: 

and p are thus known from the finite difference 
j j 
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Substituting these coefficients into the polynomial of equation (51) , we 
- 

have thus derived the interpolation of'the covariance ( O )  ( 7 )  function m 
between two lag points, T ,  , and T ,  . This interpolation is graphically 

= ( 2 )  
Y l - L  .Y - 

illustrated in Figure 2. The known values of - C (01, ( I ) ,  and Cm m m 
at the two end points are indicated by the ordinate, the slope, and the radius 
of curvature at these  points. The polynomial interpolation will then match 
these ordinates, slopes, and curvatures a s  indicated by the dashed curve. 
The interpolation formula of equation (51) can be used t o  calculate any 
number of points of th i s  dashed curve.  We have largely used 5 t o  10 points. 

An interpolation routine is useful only if one knows some limits for  
- 

the e r r o r  between the expected curve E.-- ( O )  and its interpolated value 
111 

C( ') In the preceding interpolation there  are seve ra l  types of e r r o r s .  polyn. 
F i r s t ,  t he re  are truncation e r r o r s  which account for  the fact that the 
polynomial of equation (51) is a Taylor s e r i e s  approximation around the 
midpoint, which has been truncated at  the fifth t e r m .  However, additional 
e r r o r s  enter the interpolation since the calculated values of a! and p 

a r e  inflicted by s ta t is t ical  e r r o r s  A 

well as quantization e r r o r s  of the finite difference approximations. We 
believe, therefore,  that a detailed e r r o r  analysis i s  hopelessly complicated. 

j - ( j )  j 
( T Q + l )  as - ( j )  

( T ~  ) and A Em m 

The des i r e  t o  judge the validity of the polynomial approximation has 

AQ 
led to  a s impler  approach, which uses an interpolation amplitude, 

This amplitude accounts for  the difference between the above polynomial 
interpolation and a straight-line interpolation which does not depend on slopes 
and curvatures.  

T - 7  
Q + 1 / 2  

Q + i  Q 
( 7 )  = 2 T - 7  P o + a o  - = ( 0 )  

m C 
st raight  

The interpolation amplitude is now defined as the mean square  difference 
between the polynomial and the straight-line interpolation. 
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I 
AQ2 = 

1 

polyn s t ra ight  1 

J 
' Q  +I-'Q TQ 

I - -  i = c  6 40 

5 z 2  
~~ +- a. a 2  +-  (TOT4 + T I T 3 )  n 

n=O ( 2 n  + i ) 4 n  

1 I --  +- 
i 12 

The coefficients a a r e  related t o  the polynomial coefficients by: n 

- 
a i  = a l  - 2p0 

- 
a = a  f o r n 2 2  , 

n n  

and can thus be calculated directly. 

The interpolation amplitude is a measure for  the effect which the use 
of first and second derivatives has on improving a straight-line interpolation. 
The polynoinial approximation will obviously become meaningless if  the 

- ( 0 )  
m interpolation amplitude becomes smal le r  than the s ta t is t ical  e r r o r  A c  

at the end points, T and T It will a l so  be meaningless i f  the end points, L L+I' 
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Polynomia l  z a n  ( T - 5 + 1 / 2 ) n  --- 
? + I - $  

T-tQ+1/2 

% + I - ?  
e-.- S t ra ight  2 P o + a o  - 

5+ 1/2 ? + I  
2 

Figure 2. Graphical illustration of interpolation routine. 
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r and r are spaced too f a r  apar t .  F o r  example, if the estimated B B + i '  

( O )  (7) has m o r e  than one extreme between 7 covariance C 
the second derivative will oscillate significantly, and the polynomial 
interpolation is subject t o  large truncation e r r o r s .  Such e r r o r s  may be 
anticipated when the interpolation amplitude is equal t o  o r  larger than the peak 

value of Em ( O) ( T), which is indicated by the  lagged product calculations in 

the vicinity of the interpolation interval. 
approximation can thus be judged t o  some extent by comparing the interpolation 

amplitudes with the s ta t is t ical  e r r o r  A 

values of the directly calculated covariance estimates 

- 
and 7 Q P + i '  m 

- 

The validity of the polynomial 

- 
( and/or the indicated peak 

m - 
( O ) (  T )  . m 

For  any given set of data the e r r o r s  caused by the truncation of the 
Taylor series and by the finite difference approximation of derivatives are 
fixed as soon as the sampling period E and the distribution of lag points 
T 

below these fixed numerical e r r o r s .  In  view of these considerations, we 
have introduced a third option to  stop the piecewise operations. This option 
is based on the average interpolation amplitude, A ,  which is taken as some 
indirect measure for  the combined numerical e r r o r s .  The word "average" 

have been chosen. It does not make sense  to  reduce the s ta t is t ical  e r r o r  
Q 

- 

A 
N+I ' refers t o  an integral over the t ime lag range, -7  N+i Z T  I T  

stepwise approximation of this integral is 

The program will stop accepting new data pieces if  the average s ta t is t ical  
e r r o r  has been reduced below the average interpolation amplitude, A .  
However, this  option will not be used if  a s ta t is t ical  e r r o r  other than zero is 
specified by the user. 

- 

A demonstration of this interpolation routine is given in the next 
section, Demonstration of the Piecewise Method. 
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DEMONSTRATION OF THE PIECEW I S E  METHOD 

The objective of this  section is to  demonstrate the operation and 
special  features of the piecewise program, which were reviewed in the 
earlier sections. To  permit meaningful discussion of resu l t s  , a relatively 
simple test signal, namely, band-limited white noise, was used. Special 
precautions (outlined below) insured to  the largest possible extent, that 
uncertainties in the resu l t s  were not introduced by the nonideal nature of the  
test signal itself. 

In this section we shall demonstrate from the resu l t s  the existence 
of the subdivision e r r o r  and its relative ineffectiveness as a high-pass filter. 
The dependence of the s ta t is t ical  uncertainty of the results on both bandwidth 
and integration t ime is a l so  demonstrated. A discussion is presented of the 
relative mer i t s  of using the interpolation routine, that is , calculating 
relatively few points on the correlation curve and using the first and second 
derivatives at these points t o  complete the curve, a s  opposed to  the direct  
calculation of the detailed curve.  
accuracy of the complete system, a Four ie r  transformation of the c ros s -  
correlation curves obtained is undertaken, and the resulting spectrum i s  
compared with the t ransfer  function of the filter employed in generating the 
test signal. 

Finally, to  demonstrate the potential 

The Test Signal 

The test signal used for  these tests was band-limited white noise, 
which was generated by passing the output of a white noise generator through 
an audio frequency spectrometer.  
the one-octave band filter centered a t  1 kHz. 
manual, the -3  dB points on this filter a r e  a t  700 and 1400 Hz, respectively. 
This form of signal was chosen because: 

Specifically, the signal was passed through 
According to  the manufacturer's 

I. It provides a test of the sys tem in t e r m s  of a random, ra ther  
than deterministic, ( i. e. , sine wave) input signal. 

2 .  The use of a l'fixedll filter offers a grea te r  reliability of spectrum 
shape then can generally be obtained from variable band-pass f i l ters .  
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3. The response function of the filter is available in the manufacturer's 
operation manual and can be used a s  an independent check of the results. 

4. The parameters  of the signal, notably its bandwidth, a r e  
unambiguously defined. 

5. A center frequency of I kHz, together with a conveniently 
available analog-to-digital conversion ra te  of 20 000 samples per  second, 
offers a reasonable degree of resolution of the correlation curve a s  a function 
of t ime delay. 

The test method used was to  generate a single signal a s  outlined 
here  and to  pass this t o  both channels of the analog-to-digital converter,  thus 
generating two identical signals on the resulting digital tape. Cross-  
correlation calculations were then made on these two signals,  resulting in 
the generation of the autocorrelation of the original band-limited signal. 
this method does provide a test of the analog-to-digital converter and 
computes program but keeps to  the irreducible minimum any dependence of 
the resul ts  on the other peripheral  equipment used to  generate that signal. 

Using 

A typical example of. the correlation function obtained is shown in 
Figure 3 for future reference purposes. 

- 1.01 I I I 
I I I I I I 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 
Time Delay r(psec) 

Figure 3 .  Correlation curve for  band-limited white noise. 
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Subdivision Error 

An analysis demonstrating the possible occurrence of subdivision 
error when using the piecewise method for  calculating correlation functions 
was presented in  the section, Accumulation of Piecewise Averages. As 
shown there ,  'the effect arises because the  amplitude of fluctuations is 
calculated relative to  the  mean value of the piece in  which they are contained, 
not relative to the mean value of the en t i re  record.  Th i s  resu l t s  in the 
partial elimination of the power contained in  fluctuations whose period is in 
excess of the piece length. 

Let us next consider the effect of subdivision e r r o r  on the results of 
our present tests with the band-limited white noise signal. 
initially that the use of a piece length A T  eliminates a l l  energy contained in  
the test signal below a frequency f where f 

expression 

Let us suppose 

and A T  are related by the 
C C 

Y ( 64) 
r f = -  

c A T  

where r is a number, probably of o rde r  unity. Fur thermore ,  the c ros s -  
correlation function of two signals is related t o  the i r  cross-power spec t ra l  
density function by the Four ie r  transform relationship: 

W 

-i w T E ( 7 )  = J s ( w ) e  dw . 
0 xy m 

However, since for  the test example used here  

equation ( 2 )  can be written 
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while for  the particular case T = 0 , 

m ~- - - 
Cm(0) = S,(w) dw . 

0 

Equation (67) represents  the well-known fact that  the correlation at zero  time 
delay is equal t o  the total signal energy. 

If, however, the use of a piece length T were t o  eliminate a l l  energy 
below a frequency f equation (65)  would become 

- 
C Y  

n 

C ( 0 , A T )  = J S m ( w )  dw . m 2n f 
C 

Thus if the spec t ra l  density function of the signal S ( w )  i s  known, it is xx 
possible to  calculate R ( 0 , A T )  as a function of the piece length A T .  xx 

For  the present test signal a useful approximation of the spec t ra l  
density function is 

s (w) = I 27rfi s w 2 2nf2 xx 
= 0 elsewhere , 

where 

f ,  = 700 Hz and f2 = 1400 Hz . 
- 

The decrease  of ( 0 ,  A T )  with decreasing piece length calculated m 
on the basis that all energy below f is eliminated for  two values of r 

[equation (64)] is shown in Figure 4. Also shown for  comparison a r e  the 

values of 5 m 
These data were generated by computing the correlation curve for  various 
piece lengths in the range 450 5 A T  2 12 000 psec .  In  a l l  cases an integra- 
tion t ime of 30 s e c  was employed, resulting in a s ta t is t ical  uncertainty of the 
order  of 0 .7  percent. 

C 

- 
( 0, A T )  obtained from the piecewise correlation program. 
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Figure 4. Effect of piece length on apparent signal power. 

Although the experimental resu l t s  clearly indicate the expected 
- 

decrease of the apparent signal power, em( 0, A T )  , with decreasing piece 

length, the r a t e  of decrease  is appreciably less than that obtained theoretically 
where it was assumed that a l l  energy below the frequency f 

However, partial elimination of energy below a frequency f where 

was eliminated. 
C 

C 

i f = -  
c A T  

is indicated by the results. 
finite piece length will lead to  an  underestimate of the power contained in 
fluctuations whose period is in excess of the piece length. 

Therefore,  we conclude that the use of a 

To ascer ta in  the relative effectiveness of piece length a s  a high-pass 
f i l ter ,  the data of Figure 4 a r e  replotted in Figure 5 as a function of the 
cutoff frequency f where the relationship, 

C 

I f = -  
c A T  Y 

has been used. 
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Figure 5. Effectiveness of piece length on apparent signal power. 

Shown fo r  comparison a r e  the expected decreases  of apparent energy 
for: 

I .  A perfect filter, that is, a filter which eliminates all energy 
below the prese t  frequency f . 

C 

2.  A filter with an attenuation r a t e  of 30 dB p e r  octave below the 
preset  frequency f . 

C 
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3 .  A filter with an attenuation rate of 3 dB per  octave. 

4. A f i l ter  with a n  attenuation rate of 2 dB per  octave. 

The results indicate that the filtering capacity of the piece length is 
approximately comparable to  that of the last-named filter. Since the 
attenuation rate of a good commercial  f i l ter  is normally of the order  of 
30 dB/octave, it does not appear that filtering by choice of piece length 
offers a comparable alternative. 

Our tests related t o  the subdivision e r r o r  therefore lead to  the 
following conclusions : 

i. The use of finite piece lengths will lead t o  an  underestimate of the 
power contained in fluctuations whose period is in excess of the piece length. 

2. 
comparable t o  that of an  analog high-pass filter with a n  attenuation ra te  of 
2 t o  3 dB/octave. 

The resulting filtering action is ra ther  weak, being approximately 

3 .  The filtering action of piece length does not offer a real is t ic  
substitute for  analog high-pass filters if sharp  frequency discrimination is 
required. It does, however, provide a convenient method for  the elimination 
of long-term drif ts ,  whose period is considerably in excess of those of the 
principal fluctuations of interest .  

S t a t i s t i c a l  A c c u r a c y  

A s  discussed in the section, Derivatives of the Covariance Function, 
one of the more unique features of the piecewise program is that not only a r e  
the s ta t is t ical  uncertainties of the covariance estimates calculated, but a l so  
the values so derived are used as a program control parameter.  Specifically, 
the processing of pieces continues until a specified confidence level is 
obtained o r  the data record  is exhausted. 

The work of Jayroe and Su [ 3 ]  yields theoretical evidence regarding 
the behavior of these s ta t is t ical  e r r o r s ,  and we shal l  base our presentation 
of the test' case resu l t s  on the i r  equation, which for  the autocorrelation case 
may be written 

00 m 

df i i - i 2 ~ f  - - 
A 2 ( ~ , T )  = - S&(f) df +y S&(f )  e 

--m -ca 
m T ( 6 9 )  
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The spectrum function for  the band-limited white noise may be idealized by 
the relation 

G, ( ~ 0 )  
S ( f )  = f ,  Z f  Sff2 

f2 - f l  

= 0 elsewhere . 

Substitution of this  expression into equation (69)  yields 

The normalized s ta t is t ical  e r r o r  is thus seen  to  be composed of two items, 
the f i r s t  independent of the t ime delay and a second which varies with this 
parameter.  Fur thermore ,  consideration of the autocorrelation function fo r  
an ideal band-limited white noise signal will show that it is of precisely the 
form of this second item. Thus we except the normalized e r r o r  when plotted 
a s  a function of t ime delay t o  follow, in general, the trends of the auto- 
correlation function. We shall see shortly that this is the case,  but note that 
this is a feature of the particular spectrum used, not something to  be expected 
in general. 

F i r s t ,  however, we must note that the predicted variation of 
s ta t is t ical  e r r o r  with t ime delay requi res  some  decision with regard to  
which value should be employed as  the program "stop" parameter.  In 
practice, we have chosen to  average the normalized s ta t is t ical  e r r o r ,  
equation ( 7 0 ) ,  over the complete time-delay range computed and to  utilize 
this average. 

Specifically, the parameter 6R is defined a s  
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The formal  derivation of 6R can be made using equation (70)  . However, 
the relationship is so simple that no formal derivation will be undertaken. 
The  first t e r m ,  being independent of t ime delay, averages t o  its value a t  
any time-delay value. The second, being damped in an oscil latory manner,  
contributes little t o  the average. Thus we find that 

To  demonstrate this  dependence of 6R on integration time, the 
correlation function of the test signal described above was determined for  
various values of 6R in the range, 

0 . 1 5 2  6 R 2 0 . 0 0 7  , 

with a confidence factor of p = 90 percent. In the majority of cases  the 
correlation function was calculated in the range 0 2 T 5 4000 psec.  A tabula- 
tion of the resul ts  obtained is shown in the following table.  

Integration Time 
(sec) 

0. 072 

0. 132 

0.516 

2. 016 

16. 06 

30. 01  
~~ 

- 

Average Statistical Uncertainty 
( 6 R )  

0.138 

0. 094 

0. 050 

0. 025 

0. 01 

0. 007 

Plotting 6R a s  a function of the square root of the reciprocal  of the 
integration t ime yields the resul t  shown in Figure 6. The  resul ts  show very 
acceptable agreement with the prediction of equation (72)  . A l s o  shown in 
this figure are the l imits of uncertainty on the statistical e r r o r  a s  defined 
by the x2 distribution in the section, Environmental and Statist ical  Variation 
of Piecewise Averages.  The fact that a l l  measured values of the uncertainty 
fall inside these l imits  indicates that the test signal did, indeed, exhibit the 
hoped-for stationarity.  
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Figure 6. Accumulative statist ical  e r r o r s .  
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The results of the variation of the uncertainty with t ime lag are 
shown in Figure 7. A s  predicted by equation (70) , the values tend t o  
oscillate around the average value, whereas comparison with the sample 
autocorrelation curve of Figure 3 shows that these oscillations follow the 
same general  t rends as  the autocorrelation curve as predicted above. The  
prediction of equation (70)  is also shown superimposed on these resul ts ,  and 
again acceptable agreement results. 

Reassuring as these comparisons may be, they do not answer the 
question of prIme importance : Do the calculated confidence intervals offer 
a realistic measure  of the difference between the t rue  and measured 
correlation curves ? 

To offer a precise comparison it would be necessary to  have a 
knowledge of the exact correlation curve.  Obtaining this curve is clearly not 
practical  since its calculation would require  infinite integration t ime.  
However, to  obtain some est imate  of the adequacy of the calculated confidence 
intervals,  the correlation curves calculated for  various integration t imes  
have been compared with the curve calculated for  the maximum integration 
t ime employed, 30 s e c ,  for  which an average confidence interval of 0 .007  
was obtained. This latter curve is thus regarded for  present purposes as  
the cor rec t  curve.  

Specifically, the value of the cross-correlation for a particular t ime 
delay T ,  obtained using an  integration t ime T ,  was subtracted from that 
obtained for  the maximum integration t ime T . The absolute value of 

this quantity was then plotted against the calculated confidence interval. 
results a r e  shown in Figure 8. 

max 
The 

The 45-deg line drawn on this  diagram corresponds to the locus of 
points for  which 

Thus points plotted above and t o  the left of this  line represent  cases for  

which the difference between the calculated curve ( T ,  T )  and the cor rec t  

curve is less than the calculated confidence interval. Conversely, points t o  
the right and below the line are those f o r  which the difference of the curves 

- 

m 
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Figure 8. A comparison of estimated and actual e r r o r s  of 
correlation measurement. 

exceeds the confidence interval. In Figure 8, a total of 9 points out of 
a total  of 80 plotted lies below the 45-deg line. Thus,  for  89 percent of the 
points considered, the difference between the calculated and co r rec t  cor -  
relation curve is less than o r  equal t o  the confidence interval. Since this 
test was conducted using a probability factor of p = 90 percent, the resu l t s  
confirm the implied cri terion that there  is a 90-percent probability that the 
difference between the measured and t rue  correlation is less than the 
confidence interval. 
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Covariance Derivatives and  Interpolation 
. The calculation of the first and second derivatives of the covariance 

function, together with the method by which these  values are used t o  
interpolate correlation curves between measured lag points, was discussed 
in the sections, Derivatives of the Covariance Function and Interpolation 
Between Lag Points, respectively. 

Figures 9 and 10 show resu l t s  of the computation of the f i r s t  and 
second derivatives, respectively, of the covariance function of one band- 
limited white noise test signal. Also shown for  comparison a r e  analytical 
calculations for  these  derivatives based on an  ideal filter shape (Fig. 11) . 
Although some  sca t t e r  is apparent, particularly for  the second derivative, 
the amount of agreement is encouraging. This i s  particularly true when one 
considers the alternative method of calculation, the use of finite differences 
between calculated covariance values. 

The next question to  be considered is the use of these derivatives 
for  interpolation of covariance curves using the fifth-order polynomial 
approximation discussed in the section, Interpolation Between Lag Points. 
To make this test a s  meaningful a s  possible, the following approach was 
adopted. A covariance curve was first calculated using closely spaced 
(50  psec) lag intervals ,  the calculation being continued until a certain 
averaged confidence interval was obtained. The calculation was then repeated, 
t o  the same confidence interval, f o r  a set of m o r e  broadly spaced lag 
intervals, and the interpolation routine was used t o  provide detail between 
these la t ter  points. 

Figure 12 shows one example in which the covariance function was 
determined for relatively broad (500 psec)  intervals ,  and a further 10 points 
were interpolated into the intervening spaces .  The averaged confidence 
interval for  both the noninterpolated curve and the remotely spaced lag points 
was  0 .02 .  The difference between the interpolated and noninterpolated points 
frequently exceeds this  confidence interval, indicating that the numerical 
e r r o r s  are predominant. However, the agreement obtained is acceptable for  
many applications, while the broad spacing of the lag points, ra ther  less 
than one per  turning point of the curve,  should be noted. 

The degree of improvement obtained by halving the distance between 
calculated lag points is shown in Figure 13. Indeed, deviations between the 
interpolated and noninterpolated curves are reduced by approximately a 
factor of two, but these deviaticns still exceed the confidence interval. 
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Finally, shown in  Figure 14 is the result  obtained when the averaged confidence 
interval was reduced to  0.007, utilizing the full 30-sec data record .  Again, 
differences typically exceed the confidence interval. 
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Figure 11. Normalized filter functions and power spec t ra l  density 
functions for  ideal filters and a filter with an attenuation r a t e  of 

30 dB p e r  octave. 

On the basis of these results i t  is concluded that in cases  where the 
detailed variation of a covariance curve as a function of t ime lag is important, 
di rect  calculation of closely spaced lag points offers the g rea t e r  reliability. 
On the other hand, for  situations where only the general  variation of the curve 
is required, significant computer t ime may be saved by using interpolation 
routines. 

The fact that the derivative calculations, available in this  program, 
may a l so  be used t o  determine the statistical properties of derivations of 
recorded data offers a n  additional valuable feature in this  computer code. 
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. . - . . .. . .. 

Overai i Accuracy 
In any data reduction method, irrespective of any special  features it 

contains, the  final question t o  be asked regards  its overall  accuracy. The 
test signal used he re  provides a surprisingly s imple  and revealing answer to 
th i s  question. The signal was generated by passing white noise through a 
f i l ter ,  the characterist ics of which are provided by the manufacturer. Thus 
calculation of the covariance function of the test signal and its subsequent 
Four ie r  transformation will yield the spec t rum of the test signal. This 
spectrum should then be directly comparable to  the available t ransfer  function 
of the filter used. 

Such a comparison is shown in Figure 11. In spi te  of the stringency 
of the test created by the sha rp  edges of the filter function, a situation in 
which the frequency resolution offered by our own test and that of the 
manufacturer become of pr ime importance, a most acceptable agreement 
is observed. 

CONCLUSIONS 

The purpose of this report  is t o  outline the special features and 
philosophy underlying the development of the piecewise correlation program. 
The concept of piecewise accumulation of mean values was developed initially 
t o  overcome storage limitations of general-purpose computers when they a r e  
used for  s ta t is t ical  data reduction. A s  demonstrated in the section, 
Accumulation of Piecewise Averages, piecewise accumulation, combined with 
the use of appropriate recursion formulas,  overcomes all limitations 
regarding the length of record  which may be processed, 

Fur thermore ,  the work of the section, Derivatives of the 
Covariance Function, demonstrates how variations between such piecewise 
averages may be used to  determine the probable accuracy of a result  
determined from a number of such pieces. Thus the s ta t is t ical  significance 
of a final resul t  is immediately available. In fact, in the present program 
such s ta t is t ical  significance is used as a control parameter ,  the computation 
proceeding only until the degree of confidence in the resu l t  requested by the 
user is obtained. Also described is the way in which variation of these 
associated confidence intervals with record  length processed may be used to  
detect the presence of nonstationary t rends  in that record.  This feature is 
of particular importance in investigations of uncontrolled environments such 
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a s  the atmosphere. The test results, presented in the section, Demonstration 
of the Piecewise Method, demonstrate that the calculated confidence intervals 
offer a very  realistic estimate of the probable e r r o r  of a computed resul t .  

The facility t o  estimate derivatives of correlation functions is a l so  
included in the program. 
Between Lag Points, and confirmatory data are shown in the section, 
Demonstration of the Piecewise Method. 

This is discussed in the section, Interpolation 

Finally, the overall accuracy of the scheme developed is shown in 
Figure 11. 

In summary,  the resu l t s  of this  work demonstrate that the concept 
of piecewise accumulation of mean values makes possible the processing of 
long s ta t is t ical  data r eco rds  on general-purpose computers where storage 
limitations would otherwise be a problem. The associated e r r o r  analysis is 
of value, in general, in optimizing computer t ime. However, the real 
power of this facility is to  be found in the analysis of data records  taken 
from uncontrolled environments, such as  the atmosphere, where nonstationary 
t rends  might otherwise go undetected. 

George C. Marshall Space Flight Center 
National Aeronautics and Space Administration 

933-50-08-00-62 
Marshall Space Flight Center, Alabama 35812, March 1968 
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